Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective.
نویسندگان
چکیده
In this topical review, progress achieved in amperometric sensing of different analytes over conducting polymer-based hybrid electrocatalysts is summarized. We report a variety of synthetic methods and the resulting hybrid assemblies, with the effectiveness of such strategies, for designing conjugated polymer-based hybrids as robust sensors for amperometric detection. Beyond incorporation of metal nanoparticles, metal-oxide and non-oxide semiconductors, carbon-based nanomaterials (nanotubes, graphene, and graphene oxide), and special dopant ions are also discussed. Moreover, some particularly interesting miscellaneous approaches, for example photo-amperometric sensing or use of overoxidized polymers, are also emphasized. Determination of dissolved gases (for example O2, NO, and NO2), ions (sulfite, nitrite, nitrate, chlorate, bromate, and iodate) and smaller and larger molecules (for example H2O2, ascorbic acid (AA), dopamine (DA), urea (UA), amino acids, hydrazine, NADH, serotonin, and epinephrine) is discussed. These achievements are reviewed from the materials perspective, addressing both synthetic and electrocatalytic aspects of the polymer-based modified electrodes. Beyond simple or more sophisticated mixing, a wide range of methods of preparation is presented, including chemical (one-pot polymerization, impregnation), electrochemical (co-deposition, doping type inclusion, etc.) and combined strategies. Classification of such synthetic routes is also included. However, it is important to note that we omit studies in which conducting polymers alone were used for determination of different species. Furthermore, because excellent reviews--cited in this work also--are available on immobilization of biomolecules (for example enzymes) for biosensing purposes, this topic, also, is excluded.
منابع مشابه
Conducting polymer based electrochemical biosensors.
Conducting polymer (CP)-based electrochemical biosensors have gained great attention as such biosensor platforms are easy and cost-effective to fabricate, and provide a direct electrical readout for the presence of biological analytes with high sensitivity and selectivity. CP materials themselves are both sensing elements and transducers of the biological recognition event at the same time, sim...
متن کاملAn aptasensor based on electrosynthesized conducting polymers, Cu2O–carbon dots and biosynthesized gold nanoparticles, for monitoring carcinoembryonic antigen
Current work proposes an inimitable composite, with great electrical conductivity and quite enhanced surface area, (including conducting polymers (poly (cathechol)), Cu2O–carbon dots and green synthesized gold nanoparticles) for detecting acute carcinoembryonic antigen. At current work, the electropolymerization was offered instead of enzyme-catalyzed polymerization of poly (catechol). <b...
متن کاملNovel actuators based on polypyrrole/carbide-derived carbon hybrid materials
Polypyrrole (PPy) hybrid films incorporated with porous carbide-derived carbon (CDC) particles are synthesized through a novel one-step electrochemical synthesis process that provides a simple and efficient alternative for current tape-casting and inkjet printing technologies to make conducting polymer-CDC-based electroactive composites. The resulting porous, robust and electrically conductive ...
متن کاملChemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids
Conducting polymer (CP) hybrids, which combine CPs with heterogeneous species, have shown strong potential as electrical transducers in chemosensors. The charge transport properties of CPs are based on chemical redox reactions and provide various chemo-electrical signal transduction mechanisms. Combining CPs with other functional materials has provided opportunities to tailor their major morpho...
متن کاملElectrochemical Behavior of Hybrid Films Composed of Copper Hexacyanoferrate and Conducting Polymer
Hybrid organic / inorganic films, composed of poly 4-aminoquinolidine (PAQ) matrix and Prussian blue – like copper hexacyanoferrate (CuHCFe) redox centers were prepared. Platinum disk (Pt) was used as a conductive substrate onto which the hybrid films (Pt/PAQ/CuHCFe) were electrodeposited by potential cycling. Electrochemical behavior of the modified electrode was well characterized using cycli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical and bioanalytical chemistry
دوره 405 11 شماره
صفحات -
تاریخ انتشار 2013